Impact Score : 0.32 (Scopus)

Comparative Proteomic Analysis of *Streptococcus agalactiae* (GBS) in Biofilms and Planktonic Growth Conditions

SHALINI VERMA, MONIKA KUMARI, VIKAS YADAV¹ AND PUJA YADAV*

Department of Microbiology, Central University of Haryana, Mahendergarh-123 031 (Haryana), India *(e-mail: pujayadav@cuh.ac.in; Mobile:86859 95379)

(Received: March 1, 2023; Accepted: April 2, 2023)

ABSTRACT

Several studies have been carried out in bacteria for the identification of gene(s) or protein(s) involved in biofilm formation for the development of anti-biofilm targets but with limited success. However, information about the involvement of proteins during biofilm formation in GBS is poorly understood. Therefore, in the present study, by using mass spectrometry, a comparative proteomics study was performed for the GBS cultured during planktonic and biofilm conditions to identify proteins expressed exclusively during the biofilm development. Two hundred and four proteins were found commonly present in both the planktonic and the biofilm stages. However, 192 and 98 proteins were exclusively detected in planktonic and biofilm stages, respectively. Out of these, 98 proteins present in the biofilm stage were associated with cellular metabolism, translations, cell wall and cell membrane synthesis machinery. Moreover, only 20 proteins (out of 98) have been characterized so far in GBS for their role in pathogenesis and therefore, further characterization of the remaining 78 proteins in biofilm formation and pathogenesis may open avenues for designing new-age drugs to combat GBS burden world-wide.

Key words: Streptococcus agalactiae, biofilm, antibiotic resistance, ESI-LC-MS/MS, proteomics

INTRODUCTION

Group B streptococcus is the leading cause of neonatal morbidity and mortality, as well as causes serious infections in immunecompromised adults (Raabe and Shane, 2019). To prevent GBS infection, intrapartum antibiotic prophylaxis (IAP) regime is being used by some developed countries to prevent the transmission of GBS from mother to neonate during delivery. However, this is not available to all women around the world. As well as increased resistance to first- and second-line antibiotics used for GBS treatment, emphasizing the need for the development of GBS vaccine. Extensive use of antibiotics over the year has resulted in the emergence and spread of antibiotics resistance bacteria turning as a global concern (Akova, 2016). According to the National Institutes of Health (NIH), USA, biofilms account for up to 80% of bacterial infections in humans. Biofilm protects the bacteria from antimicrobial agents and thus contributes to increased resistance to antimicrobial treatments. Bacterial biofilms could become several fold-more resistant to antimicrobials than their planktonic counterparts (Sharma et al., 2019). Therefore,

biofilm development should be viewed as a core mechanism of resistance. Streptococci strains are known to produce biofilm which protect them from antibiotics, disinfectants and host defence. Bacteria inside biofilm are far more resistant to antimicrobial agents than planktonic forms.

Several in vitro investigations have shown that GBS can form biofilm-like structures, which is similar to other gram-positive pathogens. The ability of GBS to form biofilms attained significant attention for its possible role in survival and pathogenesis and antibiotic resistance (Kaminska et al., 2020). Upon infection, GBS expresses several virulence factors that help the bacteria to adapt to the host's challenging environments and survival strategies including biofilm formation that facilitates the disease manifestation. In this regard, GBS expresses a diverse array of surface-associated and secretory proteins that mediate specific host-cell interactions and helps bacteria to survive against host innate immune clearance (Yadav et al., 2020). Some adhesion and invasion factors were identified from both epithelial and endothelial tissues and characterized. GBS surface proteins called adhesins enable the bacterium to make

¹School of Life Sciences, Jawaharlal Nehru University, New Delhi-110 067, India.

persistent and intimate contact with the host cells (Shabayek and Spellerberg, 2018). Several studies have demonstrated the application of proteomics in the investigation of bacterial biofilms from both gram-positive and gram-negative strains, leading to a better understanding of the dynamic functional state of a genome at the protein level and learn more about the proteins that may be involved in the emergence of a given observed phenotype.

However, despite the strong evidence of biofilm formation in GBS, relatively little is known about the genes and proteins that contribute to the development of the biofilm phenotype. Till to date no proteomic analyses of GBS biofilm have been attempted. Therefore, in this study, the differences in the whole-cell protein expressions of GBS cultivated under biofilm versus planktonic conditions were investigated.

MATERIALS AND METHODS

A clinical isolate of GBS that produces moderate biofilm was used. GBS culture was streaked on 5% sheep blood agar plate (BAP) and incubated at 37 °C for 24-30 h. Todd Hewitt Broth medium (THB; Himedia Laboratories, India) supplemented with 1% glucose was inoculated with single isolated colony from the BAP and incubated at 37°C until their OD₆₀₀ reached between 0.4-0.6. To produce biofilms, GBS culture (OD₆₀₀ = 0.5) was dispensed in 60 mm diameter, tissue culture-treated petri dishes and incubated at 37°C for 48 h under static conditions. After incubation, the supernatant was removed followed by two times washing with phosphate buffer saline (PBS). Adhered GBS biofilms were harvested by scraping the plates with the help of a sterile scraper followed by centrifugation (6000 rpm; 10 min; 4°C), and the obtained pellet was washed twice with PBS (pH 7.5) before cell lysis. For the planktonic culture, GBS was cultured in THB with 1% glucose and incubated at 37°C (150 rpm) until OD_{600} reached 0.5 which corresponded to the logarithmic phase. After reaching the desired absorbance, planktonic cells were then harvested by centrifugation (6000 rpm; 10 min; 4°C), and the obtained pellet was washed twice with PBS before cell lysis.

Protein was extracted from GBS cells as described previously with some modifications.

Briefly, GBS cell pellets from biofilm and planktonic cultures were suspended in lysis buffer (10 mM Tris-HCl pH 8.0, 1% sodium dodecyl sulphate) containing a protease inhibitor cocktail (Roche). An equal volume of 0.1 mm glass beads was added and vigorously stirred for 20 sec followed by cooling on ice for one minute. This procedure was repeated five times to ensure complete cell lysis. The cell debris was removed by centrifugation at 12000 rpm at 4°C for 20 min. The proteins in the supernatant were collected and transferred into separate sterile tubes for further quantification and SDS-PAGE analysis.

Protein measurements were performed with the BCA protein assay kit (Thermo Fisher Scientific) followed by their separation using SDS-PAGE. Fifteen micrograms of proteins from each sample were separated on 10% polyacrylamide gels. Gels were fixed for 30 min in a solution containing 50% ethanol and 10% glacial acetic acid, washed twice with deionized water and protein bands were visualized by staining with colloidal Coomassie brilliant blue (R-250). The protein gel lane, containing the same amount of protein from both planktonic and biofilm was cut into three gel fractions (based on the abundance or occurrence of unique bands in the gel) and digested with trypsin (Sequencing grade modified, Promega, India). The gel slices were further minced into smaller pieces and de-stained at room temperature using 50 mM ammonium bicarbonate solution in 50% acetonitrile for 30 min followed by dehydration in 100% ACN for 5 min. After de-staining, each fraction was subjected to in-gel reduction, alkylation, and trypsin digestion. For trypsin digestion, protein samples were reduced using 10 mM DTT in 50 mM ammonium bicarbonate for 1 h at 60°C and alkylated for 30 min at room temperature in dark with 55 mM Iodo-acetamide in 50 mM ammonium bicarbonate. ACN was removed and gel pieces were allowed to air dry for 5-10 min. Ten μ l of trypsin solution (0.2 μ g/ μ l) was added in tubes which contained gel pieces in dry state. Tubes were placed on ice for 10 min to swell and absorb the trypsin solution. Gel fractions were washed and dehydrated using 100 µl of ACN, overnight at 30°C at 50 rpm shaking. After overnight incubation, 10 µl of extraction solution (1% formic acid) was added and samples were incubated for 5 min and this step was repeated once more for efficient

peptide recovery. Samples were centrifuged and collected supernatant was concentrated in the speed-vac and sent to National Centre for Plant Genomic Research (NIPGR), JNU campus, New Delhi for the Liquid Chromatography Mass Spectrometry (LC-MS) quadru-pole time of flight mass spectrometry (TOF-MS) (Eksigent Nano LC 400-TripleTOF® 6600 quadrupole time-of-flight (QTOF).

The MS/MS spectra were extracted and searched in FASTA (C:/AB SCIEX/ProteinPilot Data / Search Databases / Streptococcagalactiace_NCBI.fasta) using ProteinPilottm software (version 1.0, 5.0.2.0, 5346). The following parameters were used for searching: trypsin as a digestion enzyme, iodoacetic acid as cysteine alkylation, and identification as sample type. Other parameters, such as tryptic cleavage specificity, precursor ion mass accuracy and fragment ion mass accuracy were built-in functions of ProteinPilottm software, and the Paragon method was adopted. The raw peptide identification results from the Paragon Algorithm (version 5.0.2.0, 5174) were further processed by the ProGroup Algorithm within the ProteinPilottm software before the final display. The following criteria were set to consider a protein for further statistical analysis: unused ProtScore ≥2 with at least two peptides with 95% confidence per repetition; mean, standard deviation, and p values to estimate the statistical significance of the protein changes calculated by ProGroup. The candidate proteins were carefully examined in the Protein ID of the ProteinPilottm software. The relative expression of a peptide was considered and observed by mass/charge ratio (m/z). The analysis of protein was done by UniprotKB beta and Clusters of Orthologous Genes (COG) database.

RESULTS AND DISCUSSION

The SDS-PAGE analysis of GBS proteins isolated from planktonic and biofilm stages revealed considerable variations in their expression. In biofilm samples, the expression of several proteins was either reduced or induced as compared to planktonic samples. Moreover, at least four protein bands were detected exclusively in biofilm samples (Fig. 1). These data demonstrated that under biofilm conditions, GBS may use different cellular

Fig. 1. Protein profiles of group *B streptococcus* grown from planktonic (lane 2) and biofilm stages (lane 3). A molecular marker with standard molecular weight proteins is shown in the left lane. Arrows indicate the proteins expressed exclusively or abundantly during biofilm stage.

reprogramming machinery for its growth and survival.

To identify proteins exclusively expressed during the biofilm stage, a comparative proteomic analysis was conducted by applying liquid chromatography-tandem mass spectrometry (LC-MS/MS). This identified 396 proteins in planktonic GBS and 302 proteins in biofilm conditions. A total of 204 proteins were found to be commonly expressed in both planktonic and biofilm conditions, whereas 98 and 192 proteins were exclusively expressed during biofilm and planktonic conditions, respectively (Fig. 2). Further in silico analysis, these 98 proteins were carried out for their annotations and role in biological systems (Table 1). Out of 98 proteins expressed during the biofilm conditions, interestigly, only 20 proteins have been studied so far for their role in biofilm formation in other bacteria (Table 2). For instance, the expression of the LCP family protein BrpA in biofilm samples was observed. The BrpA has been shown to contribute to biofilm phenotype in GBS as a BrpA defective mutant exhibited increase in chain length and biofilm defect (Patras et al, 2018). Similarly, DUF402 domain-containing

Fig. 2. Venn plot illustrating protein identification overlaps between planktonic and biofilm.

proteins was expressed in GBS during the biofilm stage. The DUF402 family has been identified in archaea including Thermococciand Halobacteria as well as Firmicutes and Actinobacteria. In Entercoccus faecalis, DUF402 domain-containing protein (hypothetical protein) was required for biofilm formation and other phenotypes of diverse bacteria (Willett et al, 2019). Other identified proteins were the Trk system potassium transporter TrkA (Binepal et al., 2016) and glycosyl-transferase family 4 (Gtf4) protein (Rainey et al., 2019), which have been characterized to play a role during biofilm formation in other streptococcal species. Hence, these studies support our data and the occurrence of these proteins during biofilm formation in GBS.

Next, the identified proteins were further classified according to the sub-cellular localization by UniProtKB. From the localization screening data, maximum proteins were located in the cytoplasm, membrane and ribosome of the cells i.e. presence in different locations/regions. However, the sub-cellular localization of only 48 proteins (out of 98 from biofilm samples) was available on UniProt. Thus, 33 were cytoplasmic predicted proteins, 11 were cell membrane and cell wall associated, and four were located in ribosomes, while the remaining 50 were of unknown sub-cellular localized (Fig. 3).

To determine the functions of identified proteins, they were classified into functional COG categories. Most of the protein differentially expressed in biofilm conditions belonged to cellular metabolism and protein synthesis while proteins associated with cell cycle and DNA replication were not detected

in these samples. Out of the 98 different proteins identified during the biofilm conditions, 23 proteins (23% of the total proteins) were associated with translation, ribosome structure and biogenesis. This was followed by proteins belonging to the category of unknown function (11%). Other categories were the one related to cell wall/membrane/ biogenesis (9%), amino acid transport (8%), signal transduction (7%), transcription (7%), energy production and conversion (6%), carbohydrate transport and metabolism (5%). Lower percentages were for the categories cell cycle control and cell division (1%), intracellular trafficking, secretion and vesicular transport (1%; Fig. 4).

These findings demonstrate that in biofilm conditions, GBS does not proliferate as compared to planktonic conditions. This study demonstrated that GBS modifies its proteome response differentially depending on the lifestyle stage. As planktonic and biofilm proteomic analyses are much scarcer in GBS, therefore, in the present study, proteins were identified which may play a role during biofilm formation in GBS.

In conclusion, it is clear that biofilms have different protein expression patterns that differ from those of planktonic bacteria. However, more studies are required to understand the role of these proteins and their genetic background in biofilm formation. The growing knowledge of the bacterial features in biofilm indicates that the growth on the substratum involves significant modifications in gene transcription, including the establishment of new genetic traits.

FUTURE DIRECTIONS

In the current study, differential proteomic profile was performed of a GBS isolate cultured under biofilm and planktonic conditions. The overall aim of this study was to identify some protein(s) of unknown function and target them as anti-biofilm with therapeutic purposes. The current work reveals the expression of 98 proteins in the biofilm stage in GBS. However, only 20 proteins are known to involve in biofilm and pathogenesis in bacteria other than GBS, while the role of 78 proteins is yet to be identified. Future research on these 78 proteins may help scientists to understand the GBS pathogenesis at molecular levels and

conditions
biofilm
the
in'
exclusively
expressed
proteins
98
$_{\rm of}$
Information
÷.
Table

Accession No.	Protein name	Location	Functional categories	Family
VP_000818341.1 VP_000578325.1	RNA polymerase sigma factor RpoD DUF4479 and tRNA-binding domain-	Cytoplasm Cytoplasm	Transcription General function prediction	Sigma-70 factor family
VP_000159519.1	containing protein Ribosome recycling factor	Cytoplasm	only Translation, ribosomal	RRF family
$VP_{000357891.1}$	Response regulator transcription	Cytoplasm	structure and piogenesis Transcription	CheY-like_superfamily
VP_001008627.1	lactor Asp-tRNA(Asn)/Glu-tRNA(Gln)		Translation, ribosomal	GatB/GatE family
$VP_{000688108.1}$	Pyridorransferase subunit Gatb		Arrino acid transport and	
VP_057486563.1	aminotransterase Thiol peroxidase	Cell membrane	metabolism Inorganic ion transport	
VP_000086620.1	50S ribosomal protein L6	Ribosome	Translation, ribosomal	Ribosomal protein uL6
VP_000003861.1	Guanylate kinase	Cytoplasm	structure and plogenesis Nucleotide transport and	ramuy Guanylate kinase family
$VP_00011823.1$	Beta-ketoacyl-[acyl-carrier-protein]		Lipid transport and	Beta-ketoacyl-ACP
VP_001002578.1	synthase family protein DUF2130 domain-containing protein		metabolism General function	synthases tamily
vP_000083755.1	MethylenetetrahydrofolatetRNA- (uracil(54)-C(5))-methyltransferase (FADH(2)-oxidizing) TrmFO	Cytoplasm	prediction only Amino acid transport and metabolism, Translation, ribosomal structure and	MnmG family
VP_000056607.1	Preprotein translocase subunit YajC	Cell membrane	biogenesis Intracellular trafficking, secretion, and vesicular	YajC family
VP_000024418.1	50S ribosomal protein L4	Ribosome	transport Translation, ribosomal	Ribosomal protein uL4
VP_000752455.1	C69 family dipeptidase	Cytoplasm	structure and biogenesis General function prediction	Iamily
VP_011324939.1	Peptide chain release factor 2		only Translation, ribosomal	
VP_000073158.1	U32 family peptidase		structure and biogenesis Translation, ribosomal	U32 family
VP_000715592.1	dTMP kinase	Cytoplasm	structure and biogenesis Nucleotide transport and	Thymidylate kinase
$VP_{000221011.1}$	Glutamate-5-semialdehyde dehydrogenase		metabolism Coenzyme transport and	tamıly
$VP_001244947.1$	Hydroxymethylglutaryl-CoA synthase	Cytoplasm	Lipid transport and	HMG-CoA synthase
VP_001867156.1	50S ribosomal protein L13	Ribosome	metabolism Translation, ribosomal	ramuy Ribosomal protein
VP_001287287.1	50S ribosomal protein L10	Ribosome	structure and blogenesis Translation, ribosomal	uris ramiy
VP_000628277.1	UDP-N-acetylmuramoyl-L-alanyl-D- glutamateL-lysine ligase		structure and biogenesis Cell wall/membrane/ envelope biogenesis	

330

Verma, Kumari, Yadav and Yadav

$WP_{-}060914826.1$	CysteinetRNA ligase		General function prediction	
WP_000772246.1	Phosphoribosylamineglycine ligase		Uncleotide transport and	
$WP_{000244022.1}$	Ribosome biogenesis GTPase Der	Cytoplasm	Transation, ribosomal Transation, ribosomal	EngA (Der) GTPase
WP_000759712.1	FAD-containing oxidoreductase		Energy production and conversion, Coenzyme	1 autor
WP_001220335.1	Trk system potassium transporter TrkA	Cytoplasm	transport and metabolism Signal transduction mechanisms, Inorganic ion	
WP_001286946.1	Exodeoxyribonuclease VII large subunit	Cytoplasm	transport and metabolism Replication, recombination	XseA family.
WP_000043874.1	Glutathione-disulfide reductase		Energy production and conversion	Class-I pyridine nucleotide-disulfide
WP_000573351.1	GTPase HflX	Cytoplasm	Translation, ribosomal	oxnooreguctase family HflX GTPase family
WP_000229966.1	sn-glycerol-3-phosphate ABC transporter		structure and biogenesis Lipid transport and	
WP_000220675.1	ALF-DINGING Protein UGPC Amidophosphoribosyltransferase		metabolism Nucleotide transport	
WP_000869689.1	Aspartate kinase		and metabolism Amino acid transport	
$WP_{000008542.1}$	DEAD/DEAH box helicase		and metabolism Replication, recombination	
WP_001019853.1	TyrosinetRNA ligase	Cytoplasm	and repair Translation, ribosomal	TyrS type 1 subfamily
WD 000061657 1	CTDate Ohat	Curtonloem	structure and biogenesis	OBG GTDage family
	GIFASE OUGE	Cytopiasiii	structure and biogenesis	ODG GIFASE IAIIIIS
WP_000048107.1	UDP-N-acetylmuramateL-alanine ligase	Cytoplasm	Cell wall/membrane/ envelone hiogenesis	MurCDEF family
WP_000777522.1	UDP-N-acetylmuramoyl-tripeptideD- alanvi-D-alanine ligase	Cytoplasm	Cell wal/membrane/ cell wal/membrane/	MurCDEF family
$WP_{-}000119582.1$	Peptidase T	Cytoplasm	General function prediction	
WP_000537055.1	LemA family protein	Cell membrane	Cell wall/membrane/	LemA family
WP_001033073.1	Wzz/FepE/Etk N-terminal domain-	Cell membrane	envelope biogenesis Cell wall/membrane/	CpsC/CapA family
$WP_{000217762.1}$	containing protein Insulinase family protein		envelope blogenesis Posttranslational modification,	
$WP_{-}000453281.1$	Dihydroxyacetone kinase subunit L		protein turnover, cnaperones Carbohydrate transport and metabolism	
WP_000197731.1	Glycogen/starch/alpha-glucan family nhosnhorvlase		Carbonism Carboniydrate transport and metabolism	Glycogen phosphorylase family
$WP_{-}001028826.1$	Peptide chain release factor 1	Cytoplasm	Translation, ribosomal structure	Prokaryotic/mitochondrial
$WP_{-}001185383.1$	Aminoacyltransferase	Cytoplasm	Amino acid transport and	FemABX family
WP_000042577.1	HAMP domain-containing histidine kinase	Cell membrane	Signal transduction mechanisms	

331

WP_000818772.1 WP_000599671.1	Transcription elongation factor GreA TIGR01440 family protein		Transcription Amino acid transport and metaholism	GreA/GreB family UPF0340 family
$WP_000272489.1$	Holliday junction branch migration protein		Translation, ribosomal structure and hiogenesis	
WP_000410289.1 WP_000130587.1	ABC transporter ATP-binding protein Uracil-DNA glycosylase family protein	Cytoplasm	General function prediction only Translation, ribosomal structure and hiogenesis	
WP_001034427.1 WP_000675286.1	Arginine repressor Histidine phosphatase family protein	Cytoplasm	Transcription Signal transduction mechanisms	ArgR family
WP_000681579.1	ADC transporter ALT-Dimung protein L-serine ammonia-lyase, iron-sulfur- dependent subunit beta	Cytoptasın	General function prediction only Amino acid transport and metabolism	Iron-sulfur dependent L-serine dehydratase
$WP_{-}001065465.1$	Cell wall metabolism sensor histidine	VicK	Cell membrane	Signal transduction
$WP_{-}001200106.1$	tRNA 4-thiouridine(8) synthase Thil		Translation, ribosomal structure	
$WP_{-}000745456.1$	4-alpha-glucanotransferase		carbo brogenesso Carbohydrate transport and metsbolism	
WP_000699093.1 WP_000770391.1	Response regulator transcription factor Xanthine phosphoribosyltransferase	Cytoplasm Cell membrane	Transcription Coenzyme transport and	CheY-like_superfamily
WP_001016380.1 WP_000766628.1 WP_000064984.1	Crp/Fnr family transcriptional regulator NAD(P)H-dependent oxidoreductase LCP family protein	Cell membrane	Transcription Energy production and Cell wall/membrane/envelope	LytR/CpsA/Psr (LCP)
WP_001239184.1 WP_001094117.1	DUF402 domain-containing protein NAD(P)H-dependent oxidoreductase		progenesis conversion General function prediction only Energy production and conversion	ramuy UPF0374 family Azoreductase type 1 family
WP_000750933.1 WP_060914836.1 WP_000028887.1	FAD/NAD(P)-binding protein Nitroreductase family protein tRNA uridine-5-carboxymethylaminomethyl 2010 anthrosic Orthogo Mann P		General function prediction only Energy production and conversion Translation, ribosomal structure	(
WP_001869051.1 WP_000895125.1 WP_000173347.1	(o+f) synthesis GIFase Minne Helix-turn-helix transcriptional regulator GDSL-type esterase/lipase family protein Cysteine desulfurase	Cytoplasm	and progenesus Transcription Lipid transport and metabolism Amino acid transport and metabolism	Class-V pyridoxal- nhosnhate-dependent
WP_000240199.1	Aminoacyl-tRNA hydrolase	Cytoplasm	Translation, ribosomal structure and	priospirate acpendent aminotransferase family PTH family
$WP_{000323651.1}$	NAD-dependent succinate-semialdehyde		biogenesis Energy production and conversion	Aldehyde dehydrogenase
WP_000902654.1	dehydrogenase 23S rRNA (uracil(1939)-C(5))- methyltransferase RImD		Translation, ribosomal structure and biogenesis	tamıly RNA M5U methy- ltransferase family
WP_000934868.1 WP_000455620.1	Hypothetical protein Ribosome maturation factor RimM	Cytoplasm	General function prediction only Translation, ribosomal structure	, RimM family
$WP_{-}000323510.1$	ABC transporter ATP-binding	Cell membrane	and progenesis Defense mechanisms	
WP_000357880.1	UDP-N-acetylglucosamine 1- carboxyvinyltransferase	Cytoplasm	Cell wall/membrane/envelope biogenesis	MurA subfamily

Purine/pyrimidine phosphoribosyltransferase family	Nucleotide transport and metabolism	Cytoplasm	Hypoxanthine phosphoribosyltransferase	WP_000892188.1
	Signal transduction mechanisms Signal transduction mechanisms	Cell membrane	CYTH domain-containing protein Cell wall-active antibiotics response protein LiaF	WP_000149079.1 WP_000714456.1
Iron/manganese superoxide dismutase family	replication, recompliation and repair Signal transduction mechanisms Inorganic ion transport and metabolism	Cytoplasm	competence/damage-inducible protein A HD domain-containing protein Superoxide dismutase SodA	WP_001200952.1 WP_001003542.1 WP_000974717.1
TelA family	turnover, chaperones Cell wall/membrane/envelope biogenesis Carbohydrate transport and metabolism		proteolytic subunit Toxic anion resistance protein Glucose-1-phosphate adenylyltransferase	WP_001285395.1 WP_000787243.1
Peptidase S14 family	biogenesis Posttranslational modification, protein	Cytoplasm	ATP-dependent Clp protease	WP_000613483.1
tRNA nucleotidyltransferase/ poly(A) polymerase family	chromosome partitioning Translation, ribosomal structure and		CCA tRNA nucleotidyltransferase	WP_001238954.1
lamuy	Replication, recombination and repair Cell cycle control, cell division,	Cell membrane	DNA recombination protein RmuC FtsX-like permease family protein	WP_000960182.1 WP_000594351.1
Glycosyltransferase 1	turnover, chaperones Cell wall/membrane/envelope biogenesis Carbohydrate transport and metabolism		Glycosyltransferase family 4 protein Glycogen synthase GlgA	WP_001219475.1 WP_000699857.1
CutC family UPF0051 (ycf24) family	Inorganic ion transport and metabolism Posttranslational modification, protein	Cytoplasm	Copper homeostasis protein CutC Fe-S cluster assembly protein SufD	WP_000603277.1 WP_000031277.1
Type-I 3-dehydroquinase family	Amino acid transport and metabolism		Type I 3-dehydroquinate dehydratase	WP_000707048.1
DnaA family	Replication, recombination and repair	Cytoplasm	Chromosomal replication initiator	WP_000138202.1

		1	
Accession No.	Protein identified in GBS	Protein's role in biofilm	Bacteria name
WP_057486563.1	Thiol peroxidase	Oxygen limitations and spatial physiological heterogeneity have been observed between biofilms. Peroxide stress increases production of extracellular polysaccharide that	Escherichia coli 0157:H7 and Acinetobacter oleivorans
WP_001220335.1@	Trk system potassium transporter TrkA	Triviations bound by the main virulence attribute of S , mutants, responsible for K^* transportation: No K^* sholished hindflur formation	Streptococcus mutans
WP_000043874.1#	Glutathione-disulfide reductase	Clinical <i>P. aeruginosa</i> strain mature and immature biofilms were disrupted by the addition of GSH	Pseudomonas aeruginosa
WP_001185383.1	Aminoacyltransferase	By incorporation Learnino acids into the inter-chain cross-bridge of peptidoglycan chains, aminoacyltransferase (<i>femX</i>) contributes to the synthesis of peptidoglycans and upregulates the establishment of hofines	Staphylococcus aureus
WP_000272489.1	Holliday junction branch migration protein RuvA	The proteins Ruva is structurally related to the eDNA lattice present in biofilm. Ruva helps in structural and mechanical integrity of biofilm.	NTHI, and Staphylococcus epidermidis
WP_000745456.1@	4-α-glucanotransferase	$4,6-a$ -glucanotransferase produce the α -glucan exopolymers which contribute in the biofilm matrix as this matrix and an analysis by the product of the p	Streptococcus oralis
WP_001016380.1	Crp/Fnr family transcriptional regulator	Crp/Fnr is transcription factor of <i>lmo0753</i> in <i>L. monocytogenes</i> and the deletion of <i>lmo0753</i> in <i>transled</i> less hiddlin canarchion	L. monocytogenes
WP_000064984.1@	LCP family protein	A key factor in the formation of biofilms is the LytR-CpsAPsr (LCP) family of proteins, which are significant mediators of cell wall integrity and maintenance. On the basis of similarities in sequence and phenotype <i>with</i> <i>Streptococcus mutans</i> BrpA, it has been determined that the GBS LCP protein is "biofilm regulatory protein A," encoded by <i>brpA</i> . Biofilm	Streptococcus mutans and Streptococcus agalactiae
WP_000750933.1@	FAD/NAD(P)-binding protein	Compared to wind type: As the absence of FAD-I led to an increase in radD expression, the FAD-I lipoprotein influences RadD at the transcriptional level. In addition to increasing the aggregation of Δfad -I F, higher expression of radD also markedly promoted the formation of dual-species biofilms in comparison	Fusobacterium nucleatum derivatives with Streptococcus gordonii
WP_060914836.1	Nitroreductase family protein	to what-type. It is expressed under oxidative stress, stress leads to biofilm formation.	Thermotoga maritima Contd.

334

Verma, Kumari, Yadav and Yadav

Table 2 contd.			
WP_001869051.1	Helix-turn-helix transcriptional regulator	A novel helix-turn-helix repressor called BigR (biofilm growth-associated repressor) regulates the transcription of an operon relevant to biofilm	Bartonella henselae
WP_000895125.1	GDSL-type esterase/lipase family protein	growth. Polysaccharide alginate of the extracellular biofilm from <i>P. aeruginos a</i> interacts with LipA (lipase family protein). Electrostatic interactions	Pseudomonas aeruginosa
WP_001219475.1@	Glycosyltransferase family 4 protein	import that curving the development and its immobilization within biofilms. Glycosyltransferases, enzymes responsible for the glucan matrix components of the <i>S. mutans</i> biofilm. More Glycosyltransferase synthesize	Streptococcus mutans
WP_000699857.1	Glycogen synthase GlgA	more glucans which help in biofilm formation. The GglA produces and accumulates glycogen in biofilm matrix but it is only function when GglP	Enterobacteriaceae
WP_000594351.1	FtsX-like permease family protein	is express as normal. FtsX protein is homologous to cell division protein. Biofilm formation is altered when	Fusobacterium nucleatum
WP_000613483.1#	ATP-dependent Clp protease proteolytic subunit	cell division is blocked. ClpP inhibits biofilm formation because it enhances <i>Agr</i> and cell wall hydrolase Sle1.	Staphylococcus aureus
WP_000787243.1	Glucose-1-phosphate adenylyltransferase	<i>clpP</i> mutant increases biofilm formation. It is responsible for glycogen synthesis, acomponent of biofilm. Activation of the protein enhance the biofilm formation by synthesizing glycogen. Inhibition of the protein in stationary phase reduces biofilm	CandidatusBrocadiasinica
WP_001200982.1#	Competence/damage-inducible protein A	formation but in exponential phase there is no effect on biofilm formation. Competence inducible protein A is a protein that helps in natural competencies, for uptake DNA, significant for molecular evolution. It may	Bacillus subtilis
WP_001003542.1#	HD domain-containing protein	reduce biofilm formation. HD-Y domain protein, negatively regulate the biofilm formation because the $\Delta rpfG$ mutant	Xanthomonas oryzaepv. Oryzicola
WP_000974717.1	Superoxide dismutase SodA	produced twice of biofilm as the wild type strain. SodA is expressed when oxidative stress occurs and the stress leading to biofilm formation. The protein is found in biofilm biomass which arises due to H_2O_2 stress.	Klebsiella pneumoniae, Escherichia coli 02 Strain E058

Fig. 3. Gene ontology (GO) annotation of identified proteins at the cell component level.

Fig. 4. COG functional annotation analysis based on molecular function.

could open avenues to design new drugs to inhibit biofilm formation. If so, it would ease the GBS disease burden worldwide.

ACKNOWLEDGEMENTS

This work was supported in part by a grant to Puja Yadav (grant ECR/2015/000431) from the Science and Engineering Research Board, Department of Science and Technology, Government of India, and grants to Vikas Yadav UGC-BSR start-up grant (No. F.30-553/2021) from University Grant Commission (UGC), Govt. of India and Ramalingaswami Re-entry Fellowship (BT/RLF/RE-ENTRY/29/2014) from the Department of Biotechnology, Govt. of India. Shalini Verma was supported by CSIR-JRF fellowship, Govt. of India and Monika Kumari received a University Research Fellowship from the University Grant Commission (UGC), Govt. of India.

REFERENCES

- Akova, M. (2016). Epidemiology of antimicrobial resistance in bloodstream infections. Virulence 7: 252-266.
- Binepal, G., Gill, K., Crowley, P., Cordova, M., Brady, L. J., Senadheera, D. B. and Cvitkovitch, D. G. (2016). Trk2 potassium transport system in *Streptococcus mutans* and its role in potassium homeostasis, biofilm formation, and stress tolerance. J. Bacteriol. **198**: 1087-1100.
- Kaminska, D., Ratajczak, M., Szumala-Kakol, A., Dlugaszewska, J., Nowak-Malczewska, D. M. and Gajecka, M. (2020). Increasing resistance and changes in distribution of serotypes of Streptococcus agalactiae in Poland. Pathogens 9: 526. doi: 10.3390/ pathogens9070526.
- Patras, K. A., Derieux, J., Al-Bassam, M. M., Adiletta, N., Vrbanac, A., Lapek, J. D., Zengler, K., Gonzalez, D. J. and Nizet, V. (2018). Group B streptococcus biofilm regulatory protein A contributes to bacterial physiology and innate immune resistance. J. Infect. Dis. 218: 1641-1652.
- Raabe, V. N. and Shane, A. L. (2019). Group B streptococcus (Streptococcus agalactiae). Microbiol. Spectr. 7. https://doi: 10.1128/ microbiolspec.GPP3-0007-2018.
- Rainey, K., Michalek, S. M., Wen, Z. T. and Wu, H. (2019). Glycosyltransferase-mediated biofilm matrix dynamics and virulence of Streptococcus mutans. Appl. Environ. Microbiol. 85. https://doi.org/10.1128/ AEM.02247-18.
- Shabayek, S. and Spellerberg, B. (2018). Group B streptococcal colonization, molecular characteristics and epidemiology. Front. Microbiol. 9: 01-14.
- Sharma, D., Misba, L. and Khan, A. U. (2019). Antibiotics versus biofilm: An emerging battle ground in microbial communities. Antimicrob. Resist. Infect. Control. 8: 01-10.
- Willett, J. L., Ji, M. M. and Dunny, G. M. (2019). Exploiting biofilm phenotypes for functional characterization of hypothetical genes in Enterococcus faecalis. npj Biofilms. Microbiomes 5: 23. https://doi.org/10.1038/ s41522-019-0099-0.
- Yadav, P., Verma, S., Bauer, R., Kumari, M., Dua, M., Johri, A. K., Yadav, V. and Spellerberg, B. (2020). Deciphering Streptococcal biofilms. *Microorganisms* 8: 01-31.